Asymptotic Behavior of Orthogonal Polynomials Corresponding to a Measure with Infinite Discrete Part off an Arc
نویسنده
چکیده
We study the asymptotic behavior of orthogonal polynomials. The measure is concentrated on a complex rectifiable arc and has an infinity of masses in the region exterior to the arc. 2000 Mathematics Subject Classification. 42C05, 30E15, 30E10.
منابع مشابه
Orthogonal polynomials in the normal matrix model with a cubic potential
We consider the normal matrix model with a cubic potential. The model is ill-defined, and in order to reguralize it, Elbau and Felder introduced a model with a cut-off and corresponding system of orthogonal polynomials with respect to a varying exponential weight on the cut-off region on the complex plane. In the present paper we show how to define orthogonal polynomials on a specially chosen s...
متن کاملAsymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...
متن کاملRelative Asymptotics for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner Product
We investigate the asymptotic properties of orthogonal polynomials for a class of inner products including the discrete Sobolev inner products 〈h, g〉 = ∫ hg dμ+ ∑m j=1 Nj i=0 Mj,ih (cj)g (cj), where μ is a certain type of complex measure on the real line, and cj are complex numbers in the complement of supp(μ). The Sobolev orthogonal polynomials are compared with the orthogonal polynomials corr...
متن کاملVarying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros
We consider a varying discrete Sobolev inner product involving the Laguerre weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and of their zeros. We are interested in Mehler–Heine type formulas because they describe the asymptotic differences between these Sobolev orthogonal polynomials and the classical Laguerre polynomials. Moreover, they give u...
متن کاملAsymptotics for Orthogonal Polynomials off the Circle
We study the strong asymptotics of orthogonal polynomials with respect to a measure of the type dμ/2π + ∑∞ j=1Ajδ(z− zk), where μ is a positive measure on the unit circle Γ satisfying the Szegö condition and {zj}j=1 are fixed points outside Γ. The masses {Aj}j=1 are positive numbers such that ∑∞ j=1Aj < +∞. Our main result is the explicit strong asymptotic formulas for the corresponding orthogo...
متن کامل